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Abstract: Management of patients with advanced non-small cell lung cancer (NSCLC) has recently 
been transformed by molecularly targeted and immunotherapeutic agents. In patients with EGFR/ALK/
ROS mutated NSCLC, first line molecular therapy is the standard of care. Moreover, immune checkpoint 
inhibitors are revolutionary treatment options for advanced NSCLC and are now the standard of care in 
front-line or later line settings. Both classes of agents have led to improved patient outcomes, however, 
primary resistance and development of acquired resistance to both targeted and immunotherapeutic agents 
is commonly observed, limiting the use of these agents in clinical settings. In this review, we will discuss 
the most recent advances in understanding the mechanisms of primary and acquired resistance, progress 
in the spectrum of assays detecting causative molecular events and the development of new generations of 
inhibitors to overcome acquired resistance.
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Introduction

Research over the last decade has transformed the 
management of patients with advanced non-small cell 
lung cancer (NSCLC) with the recognition of molecularly 
defined subsets of tumors with unique sensitivities to 
targeted therapeutics, such as patients with EGFR/ALK/
ROS-mutated lung adenocarcinoma. Upfront molecular 
therapy is now the standard of care for optimization of 
treatment, and patient outcomes have greatly improved. 
In addition, an expanding group of other molecular 
alterations are continuing to be recognized and biomarker-
driven immunotherapeutic strategies have yielded dramatic 
advances in patient management. However, acquired 
resistance to both targeted and immunotherapeutic agents 
have become a pivotal issue limiting the long-term benefit 
of such therapies. In the current review, we will highlight 

the most significant advances in our understanding of 
mechanisms of primary and acquired drug resistance, 
strategies to detect secondary molecular events, and 
drug development strategies yielding new generations of 
inhibitors with increasing success to overcome acquired 
resistance (Figure 1).

Epidermal growth factor receptor (EGFR)

The EGFR gene, located on chromosome 7p12-13, encodes 
for a HER family receptor tyrosine kinase (RTK) that upon 
activation, will “switch on” several downstream signaling 
pathways important in cell survival and proliferation (1). 
Activating mutations in the tyrosine kinase domain of the 
EGFR gene are seen in 10–15% of non-squamous NSCLC 
and are responsible for tumor growth, proliferation, 
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invasion and metastases by promoting pro-proliferative 
and anti-apoptotic effects. These mutations occur more 
commonly in tumors in women, non-smokers and patients 
of Asian ethnicity and can be as frequent as 50–60% in lung 
adenocarcinomas in Asian women (2,3).

Two so-called “classic” mutations account for >90% 
of the known activating EGFR mutations: L858R point 
mutation on exon 21 and in-frame deletions around the 
conserved LREA motif of exon 19 (2,3). The presence of 
such activating EGFR mutations serves as a biomarker as 
well as a target for therapy with EGFR-tyrosine kinase 
inhibitors (TKI). Several clinical studies revealed that 
response rates (RRs) to first generation EGFR-TKIs, such 
as gefitinib and erlotinib, in patients harboring an EGFR-
activating mutation are 50–80% and can lead to durable 

responses with progression free survival in the 8–12 months 
range (4-8). In 2012, a meta-analysis of six randomized 
controlled trials confirmed significant improvement in 
overall response rate (ORR) and doubling of progression 
free survival (PFS) in patients with advanced EGFR 
mutated NSCLC receiving first-line EGFR-TKI, as 
compared to conventional chemotherapy (9). Therefore, 
EGFR-TKIs are the current standard treatment for these 
patients and frontline molecular testing is now part of 
routine management (4,9). 

However, resistance to EGFR-TKIs poses a major 
clinical problem, and can be categorized as primary or 
acquired. Primary resistance refers to de novo lack of 
response to the targeted therapy, while acquired resistance 
is defined as progression of disease after an initial period of 

Figure 1 General mechanisms of resistance.

EMT/phenotypic change

SCLC chemotherapy

P

RAS PI3K

AKT

MEK1/2

ERK/MAPK

mTOR

T790M

C797S

Mutated 
EGFR

Bypass Signaling pathways
(MET, HER … )

Cell proliferation, invasion, migration, inhibition of apoptosis

T cell

PD1

PD-L1

Extracellular compartment

P-gp efflux 
pump 

RAF

Osimertinib

1st/2nd

generation
TKIs



Annals of Translational Medicine, Vol 5, No 18 September 2017 Page 3 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2017;5(18):377atm.amegroups.com

clinical response (10,11). 

Primary resistance

Several mechanisms of primary resistance to EGFR-TKIs 
have been described. 

First generation EGFR-TKIs are not effective in patients 
with the gatekeeper EGFR T790M mutation which can be 
present as a germline mutation in rare familial clusters. This 
mutation will be discussed in detail later in this review (10). 

Another example of primary resistance to EGFR TKIs is 
the EGF exon 20 insertion mutation. The RR of NSCLCs 
with EGFR exon 20 insertion mutation to EGFR-TKIs is 
below 5% (12). The mechanism for this primary resistance 
has been described by Yasuda et al. (12), 80–90% of 
activating EGFR exon 20 mutations cause insertion of one 
to four amino-acids beyond the C-helix of the tyrosine 
kinase domain, forming a wedge at the end of the C helix 
that promotes the active kinase and leaves the adenosine 
triphosphate binding pocket unaltered. Interestingly, an 
EGFR exon 20 insertion mutation sensitive to the EGFR-
TKIs was also identified (EGFR A763_Y764insFQEA). 
Structurally, this mutation is very different from other exon 
20 insertions and more closely resembles the L858R and 
exon 19 deletion mutations. At present, the standard of 
care for TKI-resistant exon 20 mutated EGFR tumors is 
conventional chemotherapy (13,14). Efforts are being made 
to develop EGFR targeting agents with activity against this 
important class of mutation (e.g., AP32788 NCT02716116).

Another mechanism of primary resistance is conferred 
by polymorphisms in the Bim gene. Bim is a potent pro-
apoptotic protein and its expression is suppressed in EGFR 
mutated lung cancers. TKI therapy can upregulate Bim 
expression and allow for cell death and tumor regression. In 
the case of certain inherited Bim gene polymorphisms, the 
pro-apoptotic domain is not present and TKI therapy is less 
successful with shorter duration of response than in other 
genotypes (15).

Finally, as expected, EGFR-TKI therapy is not effective 
against tumors with concurrent activating mutations in genes 
downstream of EGFR such as K-ras and BRAF or against 
tumors harboring other oncogenic gene alterations (10).  
Canale et al. (16) observed that TP53 tumor suppressor 
gene mutations, especially exon 8 mutations, reduce the 
RR to TKIs. Inferior outcomes in the presence of p53 
mutations had been similarly noted by the Lung Cancer 
Mutation Consortium (17). TP53 mutations occur in about 
30%–40% of NSCLCs and while TP53 mutations might 

not be actionable, this may be important in order to risk 
stratify patients. 

Acquired resistance

Acquired resistance to EGFR-TKIs typically develops 
within 6–18 months of starting therapy (11). Biopsy and 
sequencing of tumors in patients with disease progression 
on an EGFR TKI as well as in vitro and mouse studies have 
led to the discovery of potential mechanisms of acquired 
resistance as well as novel and effective ways of overcoming 
certain resistance mechanisms (18).

T790M mutation

The most common mechanism of acquired resistance, 
accounting for up to 60% of cases, is a secondary mutation 
of EGFR gene, leading to the substitution of methionine 
for threonine at position 790 (T790M) (10). Methionine’s 
large side chain causes steric hindrance and reduces the 
ability of 1st generation EGFR-TKIs such as erlotinib and 
gefitinib to bind to the ATP-kinase pocket. In addition, 
this mutation changes the dynamics at the binding site such 
that ATP, rather than the ATP-competitive EGFR-TKIs is 
the favored substrate. This leads to a 1,000-fold increased 
resistance against the EGFR-TKIs (10,18). 

Several studies have been done to determine if tumor 
cells containing the T790M mutation are present prior to 
EGFR-TKI treatment initiation or if they develop from 
cancer stem cells during treatment. These studies have 
found very few TKI-resistant cells prior to treatment 
thereby suggesting that the T790M mutation more 
commonly arises due to selective pressure during EGFR-
TKI therapy (10,19). Three other point mutations have 
been implicated in EGFR-TKI resistance (D761Y, L747S, 
T854A), however they have been reported only occasionally 
and their mechanism of resistance is less understood (10). 

Activation of bypass signaling pathways

A second mechanism of acquired resistance is through 
the activation of bypass signaling pathways. For example, 
amplification of the MET gene has been seen in 5–22% 
of NSCLC patients who develop acquired resistance to 
EGFR-TKIs. These amplifications are seen in very low 
rates in tumors that have not yet undergone treatment 
with an EGFR-TKI. Thus, it has been postulated that 
under the selective pressure of EGFR-TKI therapy, cells 
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with dual EGFR and MET activation can undergo clonal 
selection. Ultimately, these EGFR + MET mutated cells 
form the bulk of the tumor leading to clinical resistance 
against EGFR-TKIs. In vitro, MET amplification has been 
reported in gefitinib-resistant cell lines and dual EGFR and 
MET inhibition has been successful in inducing apoptosis 
in this case (20,21). 

MET activation by its ligand HGF may also be another 
mechanism contributing to acquired resistance. In a few 
studies, it has been noted that HGF is expressed in high 
levels in 29% of patients with primary resistance and 61% 
of patients with acquired resistance (22). If future studies 
validate this mechanism in vivo, targeted therapy against 
HGF can be a potential strategy to treat this subset of 
patients (10). 

HER2 amplification is another alternative signaling 
pathway that plays a role in acquired resistance to EGFR-
TKIs and has been noted in up to 13% of patients (10). 
In a phase Ib study of patients with NSCLC resistant to 
erlotinib/gefitinib, dual inhibition of EGFR and HER2 with 
afatinib and cetuximab demonstrated promising activity 
leading to median PFS of 4.7 months (23). Another bypass 
signaling mechanism that has been recently implicated 
in afatinib-resistant PC9 cells is the IGF1R pathway—
increased expression of insulin-like growth factor binding 
protein 3 (IGFBP-3) enhances IGF1R activity leading to 
increased AKT phosphorylation and subsequent cell cycle 
progression (24).

Phenotypic changes

Yet another mechanism of acquired resistance is through 
phenotypic alterations. Epithelial mesenchymal transition 
(EMT) is defined as the loss of epithelial markers and a 
subsequent gain of mesenchymal features (10). NSCLC 
cells that undergo EMT lose sensitivity to EGFR-TKIs (25). 
Furthermore, when the epithelial phenotype is restored 
in these EGFR-mutated NSCLC cell lines, they become 
sensitive again to EGFR-TKIs (26). The transition between 
epithelial and mesenchymal phenotypes is likely influenced 
by the AXL RTK. A high level of expression of AXL RTK 
has been implicated in acquired resistance to erlotinib, 
and over-expression of this same RTK has been noted in 
NSCLC cells with the mesenchymal subtype (10,27). Taken 
together, it seems as though AXL plays a significant role in 
the acquired resistance to EGFR-TKIs and may one day be 
an effective pharmaceutical target. In fact, a recent report 
of tumor genomic profiling cites the case of a patient with 

lung adenocarcinoma and pleural carcinomatosis whose 
genome analysis showed focal gain of chromosome 19q12-
13.11, including AXL. He was enrolled in a Phase I trial 
of MGCD265, a TKI targeting MET and AXL with a 
dramatic response and near resolution of lung infiltrates on 
imaging in just 2 months (28).

A different kind of phenotypic alteration happens when 
the NSCLC cells undergo histological transformation to 
small cell lung cancer (SCLC). This has been reported in 
3–14% of patients with acquired resistance to EGFR-TKI 
who underwent re-biopsy. In a recent study Lee et al. (29) 
investigated 21 patients with advanced EGFR-mutated 
NSCLC that transformed into SCLC. Whole genome 
sequencing was performed at different time points during 
disease evolution. It was concluded that TKI-resistant 
EGFR-mutated NSCLC and SCLCs share a common clonal 
origin and the clonal divergence occurs before the EGFR 
TKI therapy. Complete inactivation of RB1 and TP53 were 
observed from the early NSCLC stages in these tumors. 
There have been multiple cases that reported good response 
to SCLC chemotherapy regimens once the NSCLC 
undergoes this histological transformation underlining the 
importance of testing for such alterations (10,30).

Pharmacodynamic limitations

Another limitation to the use of first and second generation 
TKIs is the inability of these drugs to fully penetrate the 
blood brain barrier (BBB) and enter the central nervous 
system (CNS). Patients can often develop CNS metastases 
during treatment, even when their extracranial tumors are 
still under control (31). CNS concentrations of all currently 
available agents are lower than plasma [gefitinib has a CSF 
concentration approximately 1% of serum and erlotinib 
has a CSF concentration 5% of serum (32,33)]. Many 
EGFR TKIs that have been designed for improved CNS 
penetration are currently under investigation. One such 
drug, AZD3759 has shown promise with CNS penetration 
adequate enough to promote tumor shrinkage in patients 
with brain and leptomeningeal metastases in addition to a 
tolerable side-effect profile (34).

Treatment approaches to overcome resistance

Third generation EGFR TKIs

Knowledge of the biological mechanisms behind acquired 
resistance to EGFR-TKIs has led to the development of 3rd 
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generation TKIs that specifically target the EGFR T790M 
mutant cells. The side-effect profile of these new TKIs is 
more favorable given that they spare WT EGFR (10,11). 

Of the 3rd generation TKIs, osimertinib has progressed 
the furthest in clinical development. Osimertinib, an oral 
irreversible agent with CNS penetration, had initially been 
approved by the FDA under the Breakthrough Therapy 
Designation Program based on outstanding results from the 
AURA-1 and AURA-2 studies suggestive of great efficacy 
with RRs in the 50–60% range in EGFR T790M-mutated 
cases as well as favorable toxicity profiles. Recently, Mok 
et al. published the results of a confirmatory, randomized, 
open-label, international, phase 3 (AURA 3) trial to show 
the superiority of osimertinib over platinum plus pemetrexed 
chemotherapy in patients with confirmed T790M-positive 
advanced NSCLC after first-line EGFR-TKI therapy. 
Median PFS was significantly longer with osimertinib 
as compared to chemotherapy (10.1 vs. 4.4 months)  
and objective RR was significantly better with osimertinib 
(71% vs. 31%). Even among the 144 patients in the trial 
who had CNS disease, osimertinib performed better, 
PFS was 8.5 months with osimertinib vs. 4.2 months with 
chemotherapy. Adverse events of grade 3 or higher were 
more common in the chemotherapy group as compared to 
osimertinib (47% vs. 23%) (35). These results led to full 
FDA approval of osimertinib in 2017. 

Unfortunately, tumor samples from patients treated with 
osimertinib have already revealed that emerging resistance 
will remain a key shortcoming of this class of drugs. The 
EGFR C797S mutation appears to be the most dominant 
resistance mechanism, with frequency as high as 20–40% (36). 
This mutation is very logical from a biochemical perspective 
as osimertinib and other irreversible EGFR inhibitors 
covalently bind to C797 of EGFR gene and this mutation 
interferes with such binding, thus drastically diminishing 
activity. Interestingly, the allelic context of C797S seems 
to have treatment implications—when the T790M and 
C797S mutations occur in trans (on separate alleles), a 
combination of first and third generation TKIs can restore 
EGFR inhibition. But, if the mutations are in cis (on same 
allele), the cells will not be sensitive to any available EGFR  
TKI (37). Understanding of such novel resistance 
mechanisms is already leading to innovative approaches of 
preventing/overcoming such resistance. 

For example, a new compound called EAI045, which 
acts as an allosteric inhibitor of the TK domain of EGFR, 
could be a promising agent in overcoming resistance to 3rd 
generation TKIs. In mouse models, EAI045 in combination 

with cetuximab, an antibody that stops EGFR dimerization, 
has been shown to be effective against the L8585R/T790M 
and L858R/T790M/C797S EGFR mutants (38). Another 
drug regimen that is a powerful candidate to overcome 
triple-mutant EGFR is the combination of cetuximab with 
brigatinib, a potent and selective ALK/EGFR T790M 
inhibitor. This regimen showed excellent efficacy in del19/
T790M and del19/T790M/C797S cell lines as well as in 
del19/T790M/C797S xenograft mouse models (39). 

MET inhibition for bypass signaling

Dual inhibition of EGFR and MET has been studied in 
two Phase III trials: the MET-Lung trial that investigated 
the combination of erlotinib ± onartuzumab, a monoclonal 
antibody against MET, as well as the MARQUEE trial that 
compared erlotinib ± tivantinib, a MET TKI. However, 
neither of these studies met their primary endpoint of 
improving OS, maybe due to the fact that the studies did 
not focus on the EGFR-mutated population (10,40).

Since successful treatment with erlotinib and crizotinib 
(a potent MET and ALK inhibitor) has been described in 
case reports (41,42), a phase I trial was designed to study 
this combination. However, in the 26 patients in the trial, 
the MTD for the two drugs was lower than the approved 
dose of the individual drugs, so phase II trials have not been 
initiated yet (43). Further trials have also been halted for the 
combination regimen of erlotinib ± the anti-MET antibody 
LY2875358 because of initial disappointing results (10).

There are more promising biomarker-driven studies 
that are currently being pursued. Preliminary studies of 
another MET inhibitor, capmatinib revealed that patients 
with cMET gene copy number ≥5 had an ORR of 40% (44). 
At present, a three-arm study has been designed to study 
capmatinib by itself and in combination with erlotinib as 
compared to standard chemotherapy in EGFR-mutated 
NSCLC patients specifically with c-MET copy number >6 
(NCT02468661).

Another study will compare the combination of gefitinib 
and a MET inhibitor named tepotinib versus chemotherapy 
as second line therapy in patients with MET + EGFR 
mutant tumors with acquired resistance to gefitinib (NCT 
01982955). The phase IB data from this study revealed 4/18 
partial responses and a good side-effect profile, and phase II 
is currently in process (45). 

Volitinib is another MET inhibitor that is presently 
being studied. One trial explores the safety of the volitinib 
+ gefitinib combination in EGFR-mutated NSCLC 
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(NCT02374645), while the TATTON trial is investigating 
volitinib in combination with different doses of osimertinib 
in EGFR-mutant NSCLC that has progressed on prior 
EGFR-TKI therapy (NCT02143466). Phase Ib data from 
the TATTON study was promising, demonstrating partial 
responses in 6/11 patients (46).

In all these studies that involve MET-targeting drugs, 
it is imperative to have assays that reliably detect MET 
pathway activation and alterations and serve as biomarkers 
that predict response to MET inhibitors. Currently, there 
are a number of methods that can be used to determine 
MET expression, however not all of them are equal. For 
example, immunohistochemistry (IHC) is an easy assay but 
studies have revealed that it is a poor marker of predicting 
sensitivity to MET inhibitors (47). Fluorescent in situ 
hybridization (FISH) and rtPCR are reliable methods 
for detecting copy number alterations in the MET gene, 
although the latter encounters problems in distinguishing 
polysomy from true copy number changes (48). One 
drawback with FISH was the question of what cutoff should 
be used to predict sensitivity to MET inhibitors. A recent 
study by Noonan et al sheds light on the matter as it showed 
that a FISH MET/CEP7 ratio of ≥5 was associated with the 
most sensitivity to MET inhibition (49). While circulating-
tumor DNA (ctDNA) testing might be a good option for 
capturing MET point mutations, however it is less sensitive 
to detect copy number changes and gene rearrangements. 
Perhaps the most effective method of detecting MET gene 
alterations and predicting response to MET inhibitors is 
next-generation sequencing (NGS). This is because NGS 
has the ability to reveal the multitude of genomic changes 
impacting the MET gene. 

A range of studies focusing on novel combination 
treatments, in an effort to develop appropriate synergistic 
treatment strategies, for example combinations of 
immunotherapeutic, anti-angiogenic and Met/AXL/MEK 
targeting agents, are ongoing (Table 1).

Other oncogenes

Anaplastic lymphoma kinase (ALK)

ALK gene chromosomal rearrangements define another 
distinct molecular subtype of NSCLC. Therapeutic options 
for the treatment of advanced ALK-positive NSCLC have 
expanded rapidly through the development of increasingly 
potent and selective ALK inhibitors, however the problem 
of developing resistance to these therapies have emerged as 

a key clinical issue. Efforts to understand the mechanisms 
of resistance to ALK inhibitors have led to recognition of 
many different mechanisms of resistance.

Crizotinib, the first  generation ALK inhibitor, 
significantly improves the objective response rates (ORRs) 
and progression-free survival (PFS) compared to cytotoxic 
chemotherapy in advanced ALK-positive lung cancer and 
has become the standard front-line therapy for ALK-
positive patients. However, most patients who initially 
respond to crizotinib develop progressive disease within  
1 year (50-52). Initial studies examining biopsies obtained at 
the time of resistance revealed multiple potential resistance 
mechanisms. Mechanisms of resistance to ALK inhibitors 
are divided into two categories, on target or ALK dependent 
alterations and off target or ALK independent alterations. 
On target alterations include mutations in the ALK tyrosine 
kinase domain and amplification of ALK (53,54).

Mutations in the ALK tyrosine kinase domain can cause 
resistance to ALK inhibitors by directly blocking the 
TKI binding to the target kinase, altering the kinase’s 
conformation, or altering the ATP-binding affinity of 
the kinase. Many mutations in the ALK tyrosine kinase 
domain have been identified. For example, the L1196M 
gatekeeper mutation alters the gatekeeper residue at the 
bottom of the ATP-binding pocket and impairs TKI 
binding; and solvent-front mutations impair drug binding 
likely through steric hindrance. Interestingly each ALK 
TKI appears to be associated with a distinctive pattern of 
ALK resistance mutations (53,54). Amplification of ALK 
occurs less frequently and causes resistance to crizotinib. It 
has been reported in 6.7% to 18.2% of cases of resistance 
to crizotinib in different series (51,55). ALK amplification 
has not yet been detected as a resistance mechanism after 
second generation ALK TKIs (53).

Similar to the case of acquired EGFR TKI resistance, 
off target alterations that cause resistance to ALK inhibitors 
include activation of bypass signaling pathways, lineage changes 
and drug efflux pump (53,54). Numerous examples of bypass 
signaling activation have been discovered. For example, gene 
expression profiling of crizotinib-resistant versus crizotinib-
naive NSCLC tumor samples identified EGFR and HER2 
signatures as two of the most enriched gene expression 
signatures in resistant tumors (51,56,57). In one study, 
increased EGFR activation was identified in 4 of 9 cases 
(44.4%) when biopsy samples prior to crizotinib initiation 
and after development of resistance were compared (51). 
This was associated with higher EGFR mRNA expression 
and persistent activation of downstream ERK and AKT 
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Table 1 Key current studies exploring novel treatment options

Study Phase Drug Treatment combination Patient population

EGFR targeted drugs

NCT01532089 II Erlotinib Alone or with Bevacizumab Stage IV NSCLC with activating EGFR mutations without 
prior treatment

NCT01859026 I/IB Erlotinib MEK162 (MEK inhibitor) NSCLC harboring KRAS or EGFR mutation

NCT02438722 II/III Afatinib Alone or with cetuximab Newly diagnosed or recurrent EGFR mutant NSCLC

NCT03054038 I Afatinib Necitumumab (anti-EGFR) EGFR mutant NSCLC with acquired resistance to 1st and 
3rd generation EGFR TKI

NCT02454933 III Osimertinib Alone or with Durvalumab 
(anti-PD-L1) 

Locally advanced or metastatic EGFR T790M positive 
NSCLC with prior EGFR TKI therapy

NCT02803203 I/II Osimertinib Bevacizumab Metastatic NSCLC due to activating EGFR mutation and 
no prior treatment with EGFR TKI or VEGF inhibitor

NCT02789345 I Osimertinib Ramucirumab (anti-VEGF) or 
necitumumab

Advanced T790M positive EGFR mutant NSCLC after 
progression on 1st line EGFR TKI therapy

NCT02520778 Ib Osimertinib Navitoclax (Bcl-2 inhibitor) EGFR mutant NSCLC with progression after EGFR TKI

NCT02917993 I/II Osimertinib INCB039110 (Jak1 inhibitor) EGFR mutant T790M positive NSCLC with prior EGFR TKI 
therapy

NCT02503722 I Osimertinib INK128 (TORC 1/2 inhibitor) EGFR mutant NSCLC with progression after EGFR TKI

NCT02143466 Ib Osimertinib Ascending doses of volitinib 
(MET inhibitor) or Selumetinib 
(MEK 1/2 inhibitor)

EGFR mutant advanced NSCLC with progression after 
prior EGFR TKI therapy

NCT02616393 II Tesevatinib 
(EGFR TKI)

Alone EGFR mutant NSCLC with prior EGFR TKI therapy and 
brain or leptomeningeal metastases

MET/AXL targeted drugs

NCT02468661 Ib/II Capmatinib 
(MET inhibitor)

Alone or with erlotinib 
compared to platinum + 
pemetrexed

EGFR mutated and MET amplified locally advanced or 
metastatic NSCLC with acquired resistance to prior EGFR 
TKI

NCT02335944 Ib/II Capmatinib EGF816 EGFR mutant NSCLC with progression of disease on 1st 
and 2nd gen EGFR TKI

NCT 01982955 Ib/II Tepotinib (MET 
inhibitor)

Gefitinib EGFR mutant, T790M-negative, MET amplified locally 
advanced or metastatic NSCLC with acquired resistance 
to prior EGFR TKI

NCT02374645 Ib Volitinib (MET 
inhibitor)

Gefitinib EGFR mutated NSCLC after progression on EGFR TKI

NCT02424617 I/II BGB324 (AXL 
TKI)

Alone or with Erlotinib Locally advanced or metastatic NSCLC

ALK targeted drugs

NCT02511184 Ib Crizotinib Pembrolizumab Untreated advanced ALK-rearranged NSCLC

NCT02521051 I/II Alectinib Bevacizumab Advanced ALK positive NSCLC

NCT03087448 I/II Ceritinib Trametinib (MEK inhibitor) ALK positive NSCLC in 3 different cohorts: ALK-inhibitor 
naïve patients, patients who progressed on Crizotinib, and 
patients who progressed on other ALK TKI 

NCT02321501 I/Ib Ceritinib Everolimus Advanced ALK positive NSCLC

Table 1 (continued)
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signaling. EGFR activation may result from receptor 
and/or ligand upregulation rather than EGFR mutations 
or amplification (51,58). MET amplification is another 
example of bypass signaling. Crizotinib is a potent ALK and 
MET inhibitor however most other ALK inhibitors do not 
have anti-MET activity. MET amplification has recently 
been reported as a bypass mechanism in patients who have 
failed second-generation inhibitors like alectinib (59-61). 
Direct activation of downstream signaling pathways can 
also enable acquired resistance to ALK inhibitors. MEK 
activating mutations, PIK3CA mutations, KIT amplification, 
IGF1R activation, SRC activation and TP53 mutations have 
all been identified, among others (62-64). Of note, ALK/
MEK dual blockade may be effective not only in overcoming 
but also in delaying ALK TKI resistance and are being tested 
in early phase clinical trials (63,65). Similar to EGFT TKI 
resistance, phenotypic changes such as EMT and SCLC 
transformation might cause ALK TKI resistance (53,66).

Lastly, P-glycoprotein (P-gp) is an ATP-dependent 
efflux pump encoded by the multidrug resistance 1 (MDR1) 
gene (67) and might mediate cases of pharmacodynamics 
resistance. P-gp is a substrate for crizotinib and ceritinib 
and its overexpression can lead to acquired ceritinib and 
crizotinib resistance by exporting the drug outside of the 
cancer cells. P-gp has also been implicated in decreased 
penetration of the blood–brain barrier by P-gp. Alectinib is 
not a P-gp substrate (54,68).

Second-generation ALK inhibitors, ceritinib and 
alectinib, were rapidly developed and showed excellent 

activity in the second line setting, leading to FDA approval 
of both compounds (69,70). ORRs to second-generation 
ALK inhibitors are reported to be 48% to 71% following 
progression on crizotinib (71,72). A third agent, brigatinib 
was recently granted accelerated approval for the treatment 
of patients with ALK positive NSCLC who have progressed 
on or are intolerant to crizotinib (73,74). Intriguingly, the 
activity of these agents seems to be similar regardless of the 
presence or the absence of secondary ALK mutations and 
therefore repeat mutation testing at the time of crizotinib 
resistance has less clear value as compared to for example 
EGFR T790M mutation testing. It appears that part of 
the reason for this is the relatively weak ALK inhibitory 
potency of crizotinib as compared to these novel agents. 

Recent data is more supportive of the need for 
molecular testing at the time of acquired resistance with 
the availability of several more potent agents as the type of 
emerging mutation might be a key determinant of efficacy 
of other alternate ALK inhibitors.

In a recent article, Gainor et al. (53) reported mechanisms 
of resistance in 83 ALK-positive patients who underwent 
repeat biopsies following disease progression on first or 
second generation ALK inhibitors. One hundred and three 
repeat biopsy samples from 83 patients were evaluated using 
genetic and cell based assays. ALK kinase domain mutations 
were found in 20% (11/55) of crizotinib resistant samples. 
The two most common mutations were the L1196M 
(gatekeeper mutation) in 7% and the G1269A in 4% of 
patients. ALK kinase domain mutations were detected in 

Table 1 (continued)

Study Phase Drug Treatment combination Patient population

Immunotherapy

NCT02364609 I/Ib Pembrolizumab Afatinib EGFR mutant NSCLC with resistance to Erlotinib

NCT02584634 Ib/II Avelumab Crizotinib (Group A) or 
Lorlatinib (Group B)

Group A: ALK negative NSCLC with progression after 1 
prior treatment

Group B: ALK positive NSCLC

NCT02013219 Ib Atezolizumab Erlotinib or alectinib Erlotinib group: EGFR TKI naïve pts with EGFR mutant 
NSCLC

Alectinib group: treatment naïve pts with ALK-positive 
NSCLC

NCT02805660 I/II Durvalumab Mocetinostat (HDAC 
inhibitor)

Phase I: solid tumors; phase II: NSCLC

NCT01968109 I/IIa BMS-986016 
(Anti-LAG3)

Alone or with Nivolumab Advanced solid tumors including NSCLC

NSCLC, non-small cell lung cancer; ALK, anaplastic lymphoma kinase.
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54% (13/24) of ceritinib resistant specimens, 53% (9/17) 
of alectinib resistant samples, and 71% (5/7) of brigatinib 
resistant samples. Distinct patterns of mutations were found 
for each of the three second-generation ALK inhibitors. 
The G1202R solvent front mutation, which produces 
resistance to 1st and 2nd generation ALK inhibitors, 
was found in 21% ceritinib, 29% alectinib, and 43% of 
brigatinib resistant samples. This has clinical implications 
as the novel ALK inhibitor, lorlatinib can overcome this 
mutation. Compound mutations were identified in 12.5% 
(6/48) of patients resistant to second-generation ALK TKIs. 
In vitro, lorlatinib was the only agent to retain potency 
against the compound mutations evaluated. EMT was 
observed in 42% (5/12) of cases. The complex evolution 
of resistance mutations over multiple lines of ALK TKI 
therapy and the potential for optimizing drug selection 
based on the understanding of secondary ALK mutations 
reinforces the need for repeat biopsies to tailor therapeutic 
selection and ctDNA is also being developed as a robust 
platform for molecular monitoring (75).

ROS/MET/BRAF

ROS

Patients with ROS proto-oncogene 1 RTK (ROS1) rearranged 
NSCLC in general respond to treatment with the ROS1 
inhibitor-crizotinib very well with quite durable remissions 
being the norm, however these tumors eventually become 
resistant as well (76,77). There is limited data available 
on the mechanisms of acquired resistance to crizotinib in 
ROS1 positive NSCLC, however several secondary ROS1 
mutations that can cause resistance have been identified, 
for example the G2026M mutation (gatekeeper) or the 
L2155S solvent-front (D2033N) mutation which can 
still respond to the multi-targeted TKI, cabozantinib 
which has ROS inhibitory activity as well (78-80).  
Other mechanisms of resistance might include gain of 
function mutations of KIT (81), activation of the RAS 
pathway due to either KRAS/NRAS mutations or to KRAS 
amplification (82), rat sarcoma viral oncogene homolog, 
EGFR activation (83), and epithelial-to-mesenchymal 
transition (78,84).

MET

NSCLC harboring MET mutations such as MET exon 
14 skipping mutations or focal amplification can respond 
to treatment with MET TKIs, such as crizotinib and 

cabozantinib. Acquired resistance to MET TKIs have been 
reported, however the molecular mechanisms are not yet 
well defined (85). In a recent study, Li et al. (86) reported two 
acquired MET mutations, Y1248H and D1246N, which can 
cause resistance against Type I MET-TKIs. It was also noted 
that EGFR amplification may act as an alternative MET-
TKIs bypass resistance mechanism (86). Amplification of 
MET, amplification of K-RAS and activation of B-RAF or 
EGFR pathways have also been proposed as mechanisms of 
acquired resistance to MET TKIs (87-89). Knowledge of 
specific molecular mechanisms might yield treatment benefits 
as some secondary MET mutations might respond to for 
example type II MET TKIs.

BRAF

In V600 BRAF mutated NSCLC, duration of response 
to BRAF TKIs are in general relatively short due to the 
development of resistance. Resistance patters are diverse 
and can occur due to a secondary MAPK alteration or due 
to activation of bypass tracks (90,91). Non-V600E BRAF 
mutations demonstrate limited sensitivity to treatment with 
BRAF TKIs and studies are ongoing to assess the utility of 
MEK inhibition in such cases (92). 

Mechanisms of resistance to BRAF are much better 
studied in patients with malignant melanoma.

For instance, Johnson et al. (93) studied 132 tumor 
specimens from 100 patients with malignant melanoma 
who had developed resistance to BRAF inhibition, the 
mechanisms of resistance included NRAS or KRAS 
mutations in 20%, BRAF splice variants in 16%, BRAF 
amplifications in 13%, MEK1/2 mutations in 7%, and non-
mitogen-activated protein kinase pathway alterations in 
11%. While these resistance mechanisms are likely shared 
with V600-mutated lung cancers, this will still certainly 
need to be demonstrated.

ctDNA as a novel testing platform in the 
monitoring of acquired resistance

CtDNA analysis has emerged as a powerful, and in certain 
settings validated, tool that allows clinicians to non-
invasively detect actionable mutations (94,95). EGFR 
T790M testing provided the first validated usage for ctDNA 
testing and while tissue biopsy remains the gold standard 
for EGFR T790M genotyping, ctDNA is emerging as a 
valuable alternative and/or complementary tool. Zheng et al. 
reported 81.25% sensitivity and 100% specificity of plasma 
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T790M testing by dPCR assays in a study of 117 patients 
with TKI resistance (96). Oxnard et al. demonstrated that 
the sensitivity of ctDNA detection of T790M was 70% and 
the objective RR and median PFS with osimertinib were 
similar in patients with T790M-positive plasma or T70M-
positive tumor results (97). It appears that the positive 
predictive value of detecting EGFR mutations in ctDNA 
is high enough to justify initiation of 3rd generation TKI 
therapy, but the negative predictive value is less robust. 
Currently, studies are in progress to test the efficacy of 
ctDNA in detecting ALK resistance mutation (98).

Acquired resistance to immunotherapeutic 
agents

Immune checkpoint inhibitors are now widely used as single 
agents for treatment of patients with advanced NSCLC in 
front-line or later lines of therapy. PD-1/PD-L1 blockade 
is a revolutionary treatment option for advanced NSCLC, 
however there is a high rate of primary resistance, and 
furthermore most patients develop acquired resistance to 
PD-1/PD-L1 blockade (99).

Mechanisms of primary resistance to immunotherapeutic 
agents include lack of PD-L1 expression on tumor cells, 
insufficient tumor-infiltrating lymphocytes or severely 
exhausted CD8+ T cells (100). Another primary resistance 
mechanism might be the scarcity of neo-antigens in tumors 
with a low mutation burden, such as EGFR/ALK/ROS-
mutated lung cancers where the average tumor mutation 
burden is a magnitude or so lower than in smoking-
associated lung cancers and indeed low RRs of 4% had been 
reported in this subset of patients (53).

Acquired resistance, defined by initial response to PD-1 
blockade followed by progression of disease, is observed 
commonly. Few mechanisms for acquired resistance have 
been clearly identified as of yet but better understanding 
of determinants of efficacy and resistance will be pivotal to 
allow optimal utilization of these novel agents. Candidate 
resistance mechanisms might include upregulation of 
alternate immune checkpoints (101), somatic mutations in 
HLA or JAK1/JAK2 genes (102,103) and genomic changes 
resulting in loss of mutation-associated neoantigens in 
resistant clones (104).

Koyama et al. (101) analyzed the tumor immune 
microenvironment in two fully immunocompetent mouse 
models of lung adenocarcinoma. In tumors with acquired 
resistance to PDL-1 blockade, upregulation of alternative 
immune checkpoints, notably T-cell immunoglobulin 

mucin-3 (TIM-3) in PD-1 antibody bound T cells was 
identified. 

Zaretsky et al. (103) demonstrated that acquired resistance 
to immunotherapeutic agents is possible through genetic 
aberrations translating into immune escape mechanisms 
in tumor cells which are then clonally expanded, leading 
to disease relapse in initially responding patients. Whole 
exome sequencing of 4 paired melanoma specimens at 
baseline and at relapse revealed loss of function mutations 
in the genes encoding interferon receptor associated Janus 
kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent 
with deletion of the wild-type allele in 2 of 4 patients. 
JAK1 and JAK2 mutations resulted in a lack of response 
to interferon gamma, including insensitivity to its anti-
proliferative effects on cancer cells. A truncating mutation 
in the gene encoding the antigen-presenting protein beta-2-
microglobulin (B2M) was identified in a third patient. The 
B2M truncating mutation led to loss of surface expression 
of major histocompatibility complex class I, which is a 
previously identified mechanism for cytotoxic T-cell escape. 
Similar results have yet to be reported in lung tumors.

Anagnostou et al.  (104) performed whole exome 
sequencing in four patients with NSCLC who developed 
acquired resistance to PD-1 blockade and compared the 
results in pre-treatment and post-treatment specimens 
and identified genomic changes resulting in loss of 7 to 18 
mutation associated neoantigens in resistant clones. Peptides 
generated from the eliminated neoantigens elicited clonal 
T-cell expansion in autologous T-cell cultures, suggesting 
that they generated functional immune responses.

More studies are needed and efforts need to be expanded 
to better understand mechanisms of resistant and to be able 
to develop more effective drugs or combination strategies 
to enhance efficacy of immunotherapies.

Summary

The introduction of molecular targeted and immunotherapeutic 
agents have completely transformed the landscape of 
NSCLC management, dramatically improving patient 
outcomes. Molecular and immune biomarker testing is 
paramount in optimal treatment selection and acquired 
resistance is a pivotal clinical issue with an increasing 
understanding of a range of mechanisms (Figure 2).

Molecular monitoring utilizing tissue biopsy or plasma 
is now a routine element of patient management with 
the availability of second and third-generation agents. 
Continued efforts towards novel combination studies to 
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overcome and possibly prevent the emergence of acquired 
resistance remain the most critical experimental need.
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